Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

CO2-selective methanol steam reforming on In-doped Pd studied by in situ X-ray photoelectron spectroscopy

Identifieur interne : 001F81 ( Main/Repository ); précédent : 001F80; suivant : 001F82

CO2-selective methanol steam reforming on In-doped Pd studied by in situ X-ray photoelectron spectroscopy

Auteurs : RBID : Pascal:12-0457222

Descripteurs français

English descriptors

Abstract

In situ X-ray photoelectron spectroscopy (in situ XPS) was used to study the structural and catalytic properties of Pd-In near-surface intermetallic phases in correlation with previously studied PdZn and PdGa. Room temperature deposition of ∼4 monolayer equivalents (MLEs) of In metal on Pd foil and subsequent annealing to 453 K in vacuum yields a ∼1:1 Pd/In near-surface multilayer intermetallic phase. This Pd1In1 phase exhibits a similar "Cu-like" electronic structure and indium depth distribution as its methanol steam reforming (MSR)-selective multilayer Pd1Zn1 counterpart. Catalytic characterization of the multilayer Pd1In1 phase in MSR yielded a CO2-selectivity of almost 100% between 493 and 550 K. In contrast to previously studied In2O3-supported Pdln nanoparticles and pure In2O3, intermediate formaldehyde is only partially converted to CO2 using this Pd1In1 phase. Strongly correlated with PdZn, on an In-diluted Pdln intermetallic phase with "Pd-like" electronic structure, prepared by thermal annealing at 623 K, methanol steam reforming is suppressed and enhanced CO formation via full methanol dehydrogenation is observed. To achieve CO2-TOF values on the isolated Pd1In1 intermetallic phase as high as on supported Pdln/ In2O3, at least 593 K reaction temperature is required. A bimetal-oxide synergism, with both bimetallic and oxide synergistically contributing to the observed catalytic activity and selectivity, manifests itself by accelerated formaldehyde-to-CO2 conversion at markedly lowered temperatures as compared to separate oxide and bimetal. Combination of suppression of full methanol dehydrogenation to CO on Pd1In1 inhibited inverse water-gas-shift reaction on In2O3 and fast water activation/conversion of formaldehyde is the key to the low-temperature activity and high CO2-selectivity of the supported catalyst.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0457222

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">CO
<sub>2</sub>
-selective methanol steam reforming on In-doped Pd studied by in situ X-ray photoelectron spectroscopy</title>
<author>
<name sortKey="Rameshan, Christoph" uniqKey="Rameshan C">Christoph Rameshan</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Physical Chemistry, University of Innsbruck, Innrain 52a</s1>
<s2>6020 Innsbruck</s2>
<s3>AUT</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>Autriche</country>
<wicri:noRegion>6020 Innsbruck</wicri:noRegion>
</affiliation>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Department of Inorganic Chemistry, Fritz-Haber-Institute of the Max-Planck-Society, Faradayweg 4-6</s1>
<s2>14195 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lorenz, Harald" uniqKey="Lorenz H">Harald Lorenz</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Physical Chemistry, University of Innsbruck, Innrain 52a</s1>
<s2>6020 Innsbruck</s2>
<s3>AUT</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>Autriche</country>
<wicri:noRegion>6020 Innsbruck</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mayr, Lukas" uniqKey="Mayr L">Lukas Mayr</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Physical Chemistry, University of Innsbruck, Innrain 52a</s1>
<s2>6020 Innsbruck</s2>
<s3>AUT</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>Autriche</country>
<wicri:noRegion>6020 Innsbruck</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Penner, Simon" uniqKey="Penner S">Simon Penner</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Physical Chemistry, University of Innsbruck, Innrain 52a</s1>
<s2>6020 Innsbruck</s2>
<s3>AUT</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>Autriche</country>
<wicri:noRegion>6020 Innsbruck</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zemlyanov, Dmitry" uniqKey="Zemlyanov D">Dmitry Zemlyanov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Purdue University, Birck Nanotechnology Center, 1205 West State Street</s1>
<s2>West Lafayette, IN 47907-2057</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>West Lafayette, IN 47907-2057</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Arrigo, Rosa" uniqKey="Arrigo R">Rosa Arrigo</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Department of Inorganic Chemistry, Fritz-Haber-Institute of the Max-Planck-Society, Faradayweg 4-6</s1>
<s2>14195 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Haevecker, Michael" uniqKey="Haevecker M">Michael Haevecker</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Department of Inorganic Chemistry, Fritz-Haber-Institute of the Max-Planck-Society, Faradayweg 4-6</s1>
<s2>14195 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Blume, Raoul" uniqKey="Blume R">Raoul Blume</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Department of Inorganic Chemistry, Fritz-Haber-Institute of the Max-Planck-Society, Faradayweg 4-6</s1>
<s2>14195 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Knop Gericke, Axel" uniqKey="Knop Gericke A">Axel Knop-Gericke</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Department of Inorganic Chemistry, Fritz-Haber-Institute of the Max-Planck-Society, Faradayweg 4-6</s1>
<s2>14195 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schlogl, Robert" uniqKey="Schlogl R">Robert Schlögl</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Department of Inorganic Chemistry, Fritz-Haber-Institute of the Max-Planck-Society, Faradayweg 4-6</s1>
<s2>14195 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Klotzer, Bernhard" uniqKey="Klotzer B">Bernhard Klötzer</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Physical Chemistry, University of Innsbruck, Innrain 52a</s1>
<s2>6020 Innsbruck</s2>
<s3>AUT</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>Autriche</country>
<wicri:noRegion>6020 Innsbruck</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">12-0457222</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0457222 INIST</idno>
<idno type="RBID">Pascal:12-0457222</idno>
<idno type="wicri:Area/Main/Corpus">001529</idno>
<idno type="wicri:Area/Main/Repository">001F81</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0021-9517</idno>
<title level="j" type="abbreviated">J. catal. : (Print)</title>
<title level="j" type="main">Journal of catalysis : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Activation</term>
<term>Alloys</term>
<term>Annealing</term>
<term>Catalytic reaction</term>
<term>Characterization</term>
<term>Conversion</term>
<term>Correlation</term>
<term>Dehydrogenation</term>
<term>Deposition</term>
<term>Electronic structure</term>
<term>Foil</term>
<term>Formaldehyde</term>
<term>Heterogeneous catalysis</term>
<term>In situ</term>
<term>Indium</term>
<term>Inverse</term>
<term>Methanol</term>
<term>Multilayer</term>
<term>Nanoparticle</term>
<term>Oxides</term>
<term>Photoelectron spectrometry</term>
<term>Room temperature</term>
<term>Selectivity</term>
<term>Steam reforming</term>
<term>Support</term>
<term>Synergism</term>
<term>Water</term>
<term>X ray</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Méthanol</term>
<term>Reformage vapeur</term>
<term>In situ</term>
<term>Spectrométrie photoélectron</term>
<term>Rayon X</term>
<term>Alliage</term>
<term>Feuille</term>
<term>Déshydrogénation</term>
<term>Eau</term>
<term>Activation</term>
<term>Catalyse hétérogène</term>
<term>Réaction catalytique</term>
<term>Corrélation</term>
<term>Température ambiante</term>
<term>Dépôt</term>
<term>Recuit</term>
<term>Couche multimoléculaire</term>
<term>Structure électronique</term>
<term>Indium</term>
<term>Caractérisation</term>
<term>Sélectivité</term>
<term>Support</term>
<term>Nanoparticule</term>
<term>Formaldéhyde</term>
<term>Oxyde</term>
<term>Synergie</term>
<term>Conversion</term>
<term>Inverse</term>
<term>Monocouche</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Méthanol</term>
<term>Alliage</term>
<term>Eau</term>
<term>Oxyde</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In situ X-ray photoelectron spectroscopy (in situ XPS) was used to study the structural and catalytic properties of Pd-In near-surface intermetallic phases in correlation with previously studied PdZn and PdGa. Room temperature deposition of ∼4 monolayer equivalents (MLEs) of In metal on Pd foil and subsequent annealing to 453 K in vacuum yields a ∼1:1 Pd/In near-surface multilayer intermetallic phase. This Pd
<sub>1</sub>
In
<sub>1</sub>
phase exhibits a similar "Cu-like" electronic structure and indium depth distribution as its methanol steam reforming (MSR)-selective multilayer Pd
<sub>1</sub>
Zn
<sub>1</sub>
counterpart. Catalytic characterization of the multilayer Pd
<sub>1</sub>
In
<sub>1</sub>
phase in MSR yielded a CO
<sub>2</sub>
-selectivity of almost 100% between 493 and 550 K. In contrast to previously studied In
<sub>2</sub>
O
<sub>3</sub>
-supported Pdln nanoparticles and pure In
<sub>2</sub>
O
<sub>3</sub>
, intermediate formaldehyde is only partially converted to CO
<sub>2</sub>
using this Pd
<sub>1</sub>
In
<sub>1</sub>
phase. Strongly correlated with PdZn, on an In-diluted Pdln intermetallic phase with "Pd-like" electronic structure, prepared by thermal annealing at 623 K, methanol steam reforming is suppressed and enhanced CO formation via full methanol dehydrogenation is observed. To achieve CO
<sub>2</sub>
-TOF values on the isolated Pd
<sub>1</sub>
In
<sub>1</sub>
intermetallic phase as high as on supported Pdln/ In
<sub>2</sub>
O
<sub>3</sub>
, at least 593 K reaction temperature is required. A bimetal-oxide synergism, with both bimetallic and oxide synergistically contributing to the observed catalytic activity and selectivity, manifests itself by accelerated formaldehyde-to-CO
<sub>2</sub>
conversion at markedly lowered temperatures as compared to separate oxide and bimetal. Combination of suppression of full methanol dehydrogenation to CO on Pd
<sub>1</sub>
In
<sub>1</sub>
inhibited inverse water-gas-shift reaction on In
<sub>2</sub>
O
<sub>3</sub>
and fast water activation/conversion of formaldehyde is the key to the low-temperature activity and high CO
<sub>2</sub>
-selectivity of the supported catalyst.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0021-9517</s0>
</fA01>
<fA02 i1="01">
<s0>JCTLA5</s0>
</fA02>
<fA03 i2="1">
<s0>J. catal. : (Print)</s0>
</fA03>
<fA05>
<s2>295</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>CO
<sub>2</sub>
-selective methanol steam reforming on In-doped Pd studied by in situ X-ray photoelectron spectroscopy</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>RAMESHAN (Christoph)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>LORENZ (Harald)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>MAYR (Lukas)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>PENNER (Simon)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>ZEMLYANOV (Dmitry)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>ARRIGO (Rosa)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>HAEVECKER (Michael)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>BLUME (Raoul)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>KNOP-GERICKE (Axel)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>SCHLÖGL (Robert)</s1>
</fA11>
<fA11 i1="11" i2="1">
<s1>KLÖTZER (Bernhard)</s1>
</fA11>
<fA14 i1="01">
<s1>Institute of Physical Chemistry, University of Innsbruck, Innrain 52a</s1>
<s2>6020 Innsbruck</s2>
<s3>AUT</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>11 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Inorganic Chemistry, Fritz-Haber-Institute of the Max-Planck-Society, Faradayweg 4-6</s1>
<s2>14195 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Purdue University, Birck Nanotechnology Center, 1205 West State Street</s1>
<s2>West Lafayette, IN 47907-2057</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>186-194</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>9623</s2>
<s5>354000502901480180</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>29 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0457222</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of catalysis : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In situ X-ray photoelectron spectroscopy (in situ XPS) was used to study the structural and catalytic properties of Pd-In near-surface intermetallic phases in correlation with previously studied PdZn and PdGa. Room temperature deposition of ∼4 monolayer equivalents (MLEs) of In metal on Pd foil and subsequent annealing to 453 K in vacuum yields a ∼1:1 Pd/In near-surface multilayer intermetallic phase. This Pd
<sub>1</sub>
In
<sub>1</sub>
phase exhibits a similar "Cu-like" electronic structure and indium depth distribution as its methanol steam reforming (MSR)-selective multilayer Pd
<sub>1</sub>
Zn
<sub>1</sub>
counterpart. Catalytic characterization of the multilayer Pd
<sub>1</sub>
In
<sub>1</sub>
phase in MSR yielded a CO
<sub>2</sub>
-selectivity of almost 100% between 493 and 550 K. In contrast to previously studied In
<sub>2</sub>
O
<sub>3</sub>
-supported Pdln nanoparticles and pure In
<sub>2</sub>
O
<sub>3</sub>
, intermediate formaldehyde is only partially converted to CO
<sub>2</sub>
using this Pd
<sub>1</sub>
In
<sub>1</sub>
phase. Strongly correlated with PdZn, on an In-diluted Pdln intermetallic phase with "Pd-like" electronic structure, prepared by thermal annealing at 623 K, methanol steam reforming is suppressed and enhanced CO formation via full methanol dehydrogenation is observed. To achieve CO
<sub>2</sub>
-TOF values on the isolated Pd
<sub>1</sub>
In
<sub>1</sub>
intermetallic phase as high as on supported Pdln/ In
<sub>2</sub>
O
<sub>3</sub>
, at least 593 K reaction temperature is required. A bimetal-oxide synergism, with both bimetallic and oxide synergistically contributing to the observed catalytic activity and selectivity, manifests itself by accelerated formaldehyde-to-CO
<sub>2</sub>
conversion at markedly lowered temperatures as compared to separate oxide and bimetal. Combination of suppression of full methanol dehydrogenation to CO on Pd
<sub>1</sub>
In
<sub>1</sub>
inhibited inverse water-gas-shift reaction on In
<sub>2</sub>
O
<sub>3</sub>
and fast water activation/conversion of formaldehyde is the key to the low-temperature activity and high CO
<sub>2</sub>
-selectivity of the supported catalyst.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001C01A03</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001C01J02</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Méthanol</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Methanol</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Metanol</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Reformage vapeur</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Steam reforming</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Reformación vapor</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>In situ</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>In situ</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>In situ</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Spectrométrie photoélectron</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Photoelectron spectrometry</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Espectrometría fotoelectrón</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Rayon X</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>X ray</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Rayos X</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Alliage</s0>
<s2>NA</s2>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Alloys</s0>
<s2>NA</s2>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Aleación</s0>
<s2>NA</s2>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Feuille</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Foil</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Hoja</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Déshydrogénation</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Dehydrogenation</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Deshidrogenación</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Eau</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Water</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Agua</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Activation</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Activation</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Activación</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Catalyse hétérogène</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Heterogeneous catalysis</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Catálisis heterogénea</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Réaction catalytique</s0>
<s5>14</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Catalytic reaction</s0>
<s5>14</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Reacción catalítica</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Corrélation</s0>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Correlation</s0>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Correlación</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Température ambiante</s0>
<s5>16</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Room temperature</s0>
<s5>16</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Temperatura ambiente</s0>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Dépôt</s0>
<s5>17</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Deposition</s0>
<s5>17</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Depósito</s0>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Recuit</s0>
<s5>18</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Annealing</s0>
<s5>18</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Recocido</s0>
<s5>18</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Couche multimoléculaire</s0>
<s5>19</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Multilayer</s0>
<s5>19</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Capa multimolecular</s0>
<s5>19</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Structure électronique</s0>
<s5>20</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Electronic structure</s0>
<s5>20</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Estructura electrónica</s0>
<s5>20</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Indium</s0>
<s2>NC</s2>
<s5>21</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Indium</s0>
<s2>NC</s2>
<s5>21</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Indio</s0>
<s2>NC</s2>
<s5>21</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Caractérisation</s0>
<s5>22</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Characterization</s0>
<s5>22</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Caracterización</s0>
<s5>22</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Sélectivité</s0>
<s5>23</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Selectivity</s0>
<s5>23</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Selectividad</s0>
<s5>23</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Support</s0>
<s5>24</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Support</s0>
<s5>24</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Soporte</s0>
<s5>24</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Nanoparticule</s0>
<s5>25</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Nanoparticle</s0>
<s5>25</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Nanopartícula</s0>
<s5>25</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Formaldéhyde</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>26</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Formaldehyde</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>26</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Formaldehído</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>26</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Oxyde</s0>
<s2>NA</s2>
<s5>27</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Oxides</s0>
<s2>NA</s2>
<s5>27</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Óxido</s0>
<s2>NA</s2>
<s5>27</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>Synergie</s0>
<s5>28</s5>
</fC03>
<fC03 i1="26" i2="X" l="ENG">
<s0>Synergism</s0>
<s5>28</s5>
</fC03>
<fC03 i1="26" i2="X" l="SPA">
<s0>Sinergia</s0>
<s5>28</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>Conversion</s0>
<s5>29</s5>
</fC03>
<fC03 i1="27" i2="X" l="ENG">
<s0>Conversion</s0>
<s5>29</s5>
</fC03>
<fC03 i1="27" i2="X" l="SPA">
<s0>Conversión</s0>
<s5>29</s5>
</fC03>
<fC03 i1="28" i2="X" l="FRE">
<s0>Inverse</s0>
<s5>30</s5>
</fC03>
<fC03 i1="28" i2="X" l="ENG">
<s0>Inverse</s0>
<s5>30</s5>
</fC03>
<fC03 i1="28" i2="X" l="SPA">
<s0>Inverso</s0>
<s5>30</s5>
</fC03>
<fC03 i1="29" i2="X" l="FRE">
<s0>Monocouche</s0>
<s4>INC</s4>
<s5>32</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Alcanol</s0>
<s5>12</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Alkanol</s0>
<s5>12</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Alcanol</s0>
<s5>12</s5>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Alcool</s0>
<s5>13</s5>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Alcohol</s0>
<s5>13</s5>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Alcohol</s0>
<s5>13</s5>
</fC07>
<fN21>
<s1>353</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001F81 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 001F81 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:12-0457222
   |texte=   CO2-selective methanol steam reforming on In-doped Pd studied by in situ X-ray photoelectron spectroscopy
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024